pyiem.plot package

Submodules

pyiem.plot.calendarplot module

Calendar Plot.

pyiem.plot.calendarplot.calendar_plot(sts, ets, data, **kwargs)

Create a plot that looks like a calendar

Parameters:
  • sts (datetime.date) – start date of this plot

  • ets (datetime.date) – end date of this plot (inclusive)

  • data (dict[dict]) – dictionary with keys of dates and dicts for val value and optionally color for color

  • kwargs (dict) – heatmap (bool): background color for cells based on val, False cmap (str): color map to use for norm apctx (dict): autoplot context.

pyiem.plot.colormaps module

Definition of colormaps

pyiem.plot.colormaps.dep_erosion()

DEP Erosion ramp yelllow to brown (jump at 5T) cool

pyiem.plot.colormaps.get_cmap(name)

Helper to workaround matplotlib complexity.

pyiem.plot.colormaps.james()

David James suggested color ramp Yellow to Blue

pyiem.plot.colormaps.james2()

David James suggested color ramp Yellow to Brown

pyiem.plot.colormaps.maue()

Pretty color ramp Dr Ryan Maue uses

pyiem.plot.colormaps.nwsice()

A Color Ramp Suggested by the NWS for Ice Accumulation.

pyiem.plot.colormaps.nwsprecip()

A color ramp used by NWS on NTP plots

Changes
  • modified the reds a bit to provide a larger gradient

  • added two light brown colors at the low end to allow for more levels

  • removed perhaps a bad orange color and remove top white color

pyiem.plot.colormaps.nwssnow()

A Color Ramp Suggested by the NWS for Snowfall

pyiem.plot.colormaps.radar_ptype() dict[str, list]

Generate a dictionary of colors for HRRR Ptype.

pyiem.plot.colormaps.stretch_cmap(cmap, bins, extend='both')

Return a cmap with appropriate over,under,bad settings.

The issue at hand is that default color ramps do not properly extend to cover over and under using values from the color ramp. That is desired behaviour of this library. If over,under,bad is already set, those settings are retained.

Parameters:
  • cmap (cm.ColorMap) – inbound colormap

  • bins (list) – values for binning

  • extend (str) – either ‘both’, ‘neither’, ‘min’, ‘max’ to control cbar

Retuns:

cm.ColorMap

pyiem.plot.colormaps.whitebluegreenyellowred()

Rip off NCL’s WhiteBlueGreenYellowRed

pyiem.plot.geoplot module

Plotting utility for generating maps, windroses and everything else under the sun.

This module provides a wrapper around Basemap and windrose packages. It tries to be general so to work for others, but may contain some unfortunate hard coded values. Bad daryl!

Example

Here is a basic example of usage.

>>> from pyiem.plot.geoplot import MapPlot
>>> m = MapPlot(sector='conus', title='My Fancy Title')
>>> m.postprocess(filename='myplot.png')
>>> m.close()
class pyiem.plot.geoplot.MapPlot(sector='iowa', **kwargs)

Bases: object

An object representing a matplotlib figure.

An object that allows one to quickly and easily generate map plots of data with some customization possible. This is what drives most of the plots you see on the IEM website.

Example

Here is an example of usage:

mplot = MapPlot(sector='midwest', title='My Plot Title')
mplot.plot_values([-99,-95], [44,45], ['hi','there'])
mplot.postprocess(filename='test.png')
mplot.close()
fig

figure object

Type:

matplotlib.Figure

ax

main figure plot axes

Type:

matplotlib.Axes

close()

Close the figure in the case of batch processing

contourf(lons, lats, vals, clevs, **kwargs)

Contourf

Parameters:
  • ilabel (boolean,optional) – Should we label contours

  • iline (boolean,optional) – should we draw contour lines

  • lblformat (str,optional) – Format string for labeling contours, %.0f. draw_colorbar (bool,optional): Draw colorbar default True.

  • linewidths (float,optional) – Line width(s) for contour lines

Returns:

The values used for plotting, maybe after gridding

Return type:

vals (np.array)

draw_colorbar(clevs, cmap, norm, **kwargs)

Draw the colorbar on the structed plot using self.cax.

Parameters:
  • clevs (list) – The levels used in the classification

  • cmap (matplotlib.colormap) – The colormap

  • norm (normalize) – The value normalizer

  • title (str,optional) – Place a label on the side, adjusts the plot accordingly to allow this text to fit, no multiline please!

  • spacing (str,optional) – should the colorbar be uniform or proportional, defaults to uniform

draw_cwas(color='k', **kwargs)

Overlay CWA Borders

Draw the CWA border lines on the map.

Parameters:
  • color (str) – The color to draw the CWA borders with

  • kwargs (dict, optional) – Parameters passed to matplotlib for plotting

draw_fema_regions(color: str = 'k', **kwargs)

Overlay FEMA Regions.

draw_mask(sector=None)

Draw a mask on the main axes.

If sector is not provided, this attempts to intelligently to the masking the user wants.

Parameters:

sector (str,optional) – Hard code what type of sector masking should happen.

draw_radar_ptype_legend()

Draw a legend for radar precipitation type.

draw_usdm(valid=None, filled=True, hatched=False, **kwargs)

Overlay the US Drought Monitor

This utilizes a GeoJSON web service provided by the IEM. The provided date to this method is passed to the web service which rectifies the date to provide the USDM analysis valid for that date. If no date is specified, the current analysis is plotted.

Parameters:
  • valid (str or datetime.date) – The valid time to plot this USDM

  • filled (boolean) – Should we draw lines or filled polygons

  • hatched (boolean) – Should we use hatch filling

  • alpha (float) – Alpha value for the polygons, default 0.5.

Returns:

date that the USDM is valid for

drawcities(**kwargs)

Overlay some cities

Parameters:
  • minpop (int,optional) – Minimum population to consider for plotting.

  • labelbuffer (int) – approximate number of pixels to compute overlap

  • textsize (int) – size of the text

  • color (str) – color to plot the text with

  • outlinecolor (str) – color to outline the text with

  • isolated (bool) – Cause plot_values to do label collision against only labels from drawing cities. Default False.

drawcounties(color='k')

Draw counties onto the map

Parameters:

color (color,optional) – line color to use

fill_climdiv(data, **kwargs)

Fill climate divisions using provided data dictionary

Parameters:

data (dict) – A dictionary of climate division IDs and values

fill_cwas(data, **kwargs)

Add overlay of filled polygons for NWS Forecast Offices.

Method adds a colorized overlay of NWS Forecast Offices based on a data dictionary of values provided. This method also places a color bar on the image.

Parameters:
  • data (dict) – Dictionary of values with keys representing the 3 char or 4 char idenitifer for the WFO. This assumes the 3 char sites are the K ones.

  • ilabel (bool) – Should we label?

fill_cwsu(data, **kwargs)

Add overlay of filled polygons for NWS CWSUs.

Data is dictionary-ish.

fill_fema_regions(data, **kwargs)

Add overlay of filled polygons for FEMA Regions.

Data is dictionary-ish and keys should be ints!

fill_rfc(data, **kwargs)

Add overlay of filled polygons for NWS RFCs.

Data is dictionary-ish. Note that the ids used here are the WMO center IDs (ie TAR) and not basin ids (ie NERFC)

fill_states(data, **kwargs)

Add overlay of filled state polygons

fill_ugcs(data, **kwargs)

Overlay filled UGC geometries using bundled geometries.

Note the importance of the is_firewx flag. This determines which UGC database to look at in the face of ambiquity.

Note that this will fail when provided a data dictionary that has both zones and counties. It is recommended to plot from application logic with your own geometries in this instance.

Parameters:
  • data (dict) – A dictionary of 6 char UGC code keys and values

  • bins (list, optional) – Bins to use for cloropleth, default 0:101:10

  • color (dict, optional) – Hard code what each UGC should display as for color.

  • is_firewx (bool, optional) – Are we plotting fire weather zones?

  • draw_colorbar (bool, optional) – Should a color bar be generated, default is True.

  • plotmissing (bool, optional) – Should missing UGC data be plotted?

  • labels (dict, optional) – UGC indexed dictionary to use for labeling.

  • lblformat (str, optional) – Format string for labels, default %s.

  • missingval (str, optional) – value to use when labelling UGCs with missing values, defaults to ‘-‘.

hexbin(lons, lats, vals, clevs, **kwargs)

hexbin wrapper.

Parameters:

draw_colorbar (bool,optional) – Draw colorbar default True.

imshow(grid: ndarray, affine: Affine, crs: str, clevs: list | None = None, **kwargs)

Reprojects an image onto each MapPanel and then draws it.

Parameters:
  • grid (np.ndarray) – The 2-D data to draw

  • affine (Affine) – The affine transformation of the image

  • crs (str) – The CRS of the image

  • clevs (list, Optional) – The levels to use for the colormap

Keyword Arguments:
  • draw_colorbar (bool,optional) – Draw colorbar default True.

  • cmap (str,optional) – The colormap to use, default jet.

  • extend (str,optional) – The extend value for the colormap.

  • clip_on (bool,optional) – Clip the image to the map region.

overlay_nexrad(valid=None, product='N0Q', caxpos=None)

Overlay an IEM NEXRAD Composite Image.

Parameters:
  • valid (datetime.datetime) – Valid time for NEXRAD overlay.

  • product (str) – either N0Q or N0R for the mosaic type.

  • caxpos (array-like) – matplotlib.axes.set_position value for the colorbar. Defaults to something in the upper-right.

Returns:

valid time of the NEXRAD, or None if not found.

overlay_roadcond(valid=None)

Overlay Iowa Winter Road Conditions.

Parameters:

valid (datetime.datetime) – Valid time for NEXRAD overlay.

pcolormesh(lons, lats, vals, clevs, **kwargs)

Opinionated mpl.pcolormesh wrapper.

If you supply a lons in the same shape of the vals, this method will tack on an extra row and column to make matplotlib happy. If you do not want this, then pass your own lons + lats that is 1 column and 1 row greater than vals.

Parameters:

draw_colorbar (bool,optional) – Draw colorbar default True.

plot_station(data, **kwargs)

Plot values on a map in a station plot like manner.

Parameters:
  • data (list) – list of dicts with station data to plot

  • fontsize (int) – font size to use for plotted text

plot_values(lons, lats, vals, fmt='%s', valmask=None, color='#000000', textsize=14, labels=None, labeltextsize=10, labelcolor='#000000', showmarker=False, labelbuffer=25, outlinecolor='#FFFFFF', zorder=None, **kwargs)

Plot values onto the map

Parameters:
  • lons (list) – longitude values to use for placing vals

  • lats (list) – latitude values to use for placing vals

  • vals (list) – actual values to place on the map

  • fmt (str, optional) – Format specification to use for representing the values. For example, the default is ‘%s’.

  • valmask (list, optional) – Boolean list to use as masking of the vals while adding to the map.

  • color (str, list, optional) – Color to use while plotting the vals. This can be a list to specify each color to use with each value.

  • textsize (str, optional) – Font size to draw text. labels (list, optional): Optional list of labels to place below the plotting of vals

  • labeltextsize (int, optional) – Size of the label text

  • labelcolor (str, optional) – Color to use for drawing labels

  • showmarker (bool, optional) – Place a marker on the map for the label

  • labelbuffer (int) – pixel buffer around labels, a value of 0 disables the label culling logic.

  • outlinecolor (color) – color to use for text outlines

  • zorder (int or list, optional) – zorder to use for plotting.

  • textoutlinewidth (int) – width of the font outline, default 3. A value <= 0 disables text outlines.

  • isolated (bool) – Only compute label collision against labels within this plot_values call. Default false

  • backgroundcolor (color) – color to use for the background of the label text, default is None.

postprocess(**kwargs)

Postprocessing.

Parameters:
  • filename (str) – file to save output to.

  • web (bool) – Write result to sys.stdout, default False.

  • memcache (obj) – write image to memcache

  • memcachekey (str) – key to use when writing to memcache.

  • memcacheexpire (int) – how long should we persist in memcache, default is 300.

  • pqstr (str) – Do pqinsert with the following LDM product name.

scatter(lons, lats, vals, clevs, **kwargs)

Draw points on the map

Parameters:
  • lons (list) – longitude values

  • lats (list) – latitude values

  • vals (list) – Data values for the points to use for colormapping

  • clevs (list) – Levels to use for ramp

  • **kwargs – additional options draw_colorbar (bool, optional): Draw a colorbar, default True.

pyiem.plot.geoplot.load_bounds(filebase)

Load bounds file

Parameters:

filebase (str) – the basename of the file containing the data

Returns:

numpy 2d array of the data

pyiem.plot.layouts module

Standardized layouts.

pyiem.plot.layouts.figure(logo: str = 'iem', title: str = None, subtitle: str = None, **kwargs) Figure

Return an opinionated matplotlib figure.

Parameters:
  • figsize (width, height) – in inches for the figure, defaults to something good for twitter.

  • dpi (int) – dots per inch

  • logo (str) – Currently, ‘iem’, ‘dep’ is supported. None disables.

  • title (str) – Title to place on the figure.

  • subtitle (str) – SubTitle to place on the figure.

  • apctx (dict, optional) – autoplot context.

  • fig (matplotlib.figure.Figure) – Figure passed in for modification for figsize only currently.

pyiem.plot.layouts.figure_axes(logo: str = 'iem', title: str = None, subtitle: str = None, **kwargs) tuple[Figure, Axes]

Return an opinionated matplotlib figure and one axes.

Parameters:
  • figsize (width, height) – in inches for the figure, defaults to something good for twitter.

  • dpi (int) – dots per inch

  • logo (str) – Currently, ‘iem’, ‘dep’ is supported. None disables.

  • title (str) – Title to place on the figure.

  • subtitle (str) – SubTitle to place on the figure.

pyiem.plot.use_agg module

A utility to load matplotlib and set the backend to AGG

Example

from pyiem.plot.use_agg import plt

pyiem.plot.util module

pyiem.plot.util Plotting Utilities.

pyiem.plot.util.centered_bins(absmax, on=0, bins=8)

Return a smooth binning around some number.

The returned array is +1 in size of the bins specified, since we want the bin edges.

Parameters:
  • absmax (real) – positive distance from the on value for bins to enclose.

  • on (real) – where to center these bins.

  • bins (int) – number of bins to generate

Returns: np.array of bins

pyiem.plot.util.draw_features_from_shapefile(gp, name, **kwargs)

Add features as we need to.

Place the logo.

pyiem.plot.util.fitbox(fig, text, x0, x1, y0, y1, **kwargs)

Fit text into a NDC box.

Parameters:

textsize (int, optional) – First attempt this textsize to see if it fits.

pyiem.plot.util.fontscale(ratio, fig=None)

Return a font size suitable for this NDC ratio.

Parameters:
  • ratio (float) – value between 0 and 1

  • fig (matplotlib.Figure,optional) – The Figure of interest

Returns:

float

Return type:

font size

pyiem.plot.util.make_panel(ndc_axbounds, fig, extent, crs, aspect, is_geoextent=False, **kwargs) GeoPanel

Make a GeoPanel.

Parameters:
  • ndc_axbounds (list) – the NDC coordinates of axes to create

  • extent (list) – x0,x1,y0,y1 in projected space plot extent, unless is_geoextent is based as True, then it is Geodetic.

  • crs (pyproj.CRS) – the crs of the axes

  • aspect (str) – matplotlib’s aspect of axes

  • is_geoextent (bool) – is the passed extent Geodetic?

  • sector_label (bool) – A Label that tracks what this is called

  • background (str) – background to use.

Returns:

GeoPanel

Return type:

the panel

pyiem.plot.util.mask_outside_geom(gp, geom)

Create a white patch over the plot for what we want to ask out.

Parameters:
  • gp (GeoPanel) – The GeoPanel instance

  • geom (geometry)

pyiem.plot.util.mask_outside_polygon(poly_verts, gp)

Make outside of a polygon.

POLY_VERTS is in CCW order, as this is the interior of the polygon

pyiem.plot.util.polygon_fill(mymap, geodf, data, **kwargs)

Generalize function for overlaying filled polygons on the map.

Parameters:
  • mymap (MapPlot) – The MapPlot instance

  • geodf (GeoDataFrame) – A GeoDataFrame with a geom column.

  • data (dict) – The dictionary of keys and values used for picking colors

Keyword Arguments:
  • ilabel (Optional[bool]) – should values be labelled? Defaults to False

  • lblfmt (str,optional) – format string for labels. Defaults to %s.

  • plotmissing (bool) – should geometries not included in the data be mapped? Defaults to True

  • color (str or dict) – Providing an explicit color (used for both edge and fill). Either provide one color or a dictionary to lookup a color by the mapping key.

  • fc (str or dict) – Same as color, but controls the fill color. Providing this value will over-ride any color setting.

  • ec (str or dict) – Same as color, but controls the edge color. Providing this value will over-ride any color setting.

  • zorder (int) – The zorder to use for this layer, default Z_FILL

  • lw (float) – polygon outline width

pyiem.plot.util.pretty_bins(minval, maxval, bins=8)

Return a smooth binning that encloses the min and max value.

The returned array is at most the specified bins + 1 in size, but could be smaller given this algorithm and the data range.

Parameters:
  • minval (real) – minimum value to enclose.

  • maxval (real) – maximum value to enclose.

  • bins (int) – maximum number of bins to generate

Returns: np.array of bins

pyiem.plot.util.ramp2df(name) DataFrame

Load pyIEM color ramp into a Pandas DataFrame.

Parameters:

name (str) – the name of the bundled color ramp.

Return type:

pandas.DataFrame

pyiem.plot.util.sector_setter(mp, axbounds, **kwargs)

Use kwargs to set the MapPlot sector.

pyiem.plot.util.update_kwargs_apctx(func)

Decorate things provided by an autoplot context dict.

pyiem.plot.windrose module

A WindrosePlot.

class pyiem.plot.windrose.WindrosePlot(**kwargs)

Bases: object

A plot that has a single windrose on it.

barplot(direction, speed, bins, nsector, **kwargs)

Do the bar plotting work.

Parameters:

cmap (colormap,optional) – Use matplotlib cmap for bars.

draw_arrows()

Place arrows on the border.

Brand the plot.

plot_calm()

Clear out the center and plot the calm value.

pyiem.plot.windrose.histogram(speed, direction, bins, nsector)

Create the histogram on the given data.

Parameters:
  • speed (pint.Quantity) – wind speed with units attached.

  • direction (pint.Quantity) – wind direction from North.

  • bins (pint.Quantity) – wind thresholds to use for bining. Any value below the first value is considered calm. The last value is extended to infinity to represent the last bin.

Returns:

the percentage of reports below first bin value. dir_centers (list): the center of the direction bins. table (np.ndarray): The <direction>, <speed> histogram in percent.

Return type:

calm_percent (float)

pyiem.plot.windrose.plot(direction, speed, **kwargs)

Create a WindrosePlot, add bars and other standard things.

Parameters:
  • direction (pint.Quantity) – wind direction from North.

  • speed (pint.Quantity) – wind speeds with units attached.

  • bins (pint.Quantity) – wind speed bins to produce the histogram for.

  • nsector (int) – The number of directional centers to divide the wind rose into. The first sector is centered on north.

  • rmax (float) – Hard codes the max radius value for the polar plot.

  • cmap (colormap) – Matplotlib colormap to use.

  • plot_convention (str) – Either from (default) or to.

Returns:

WindrosePlot

Module contents

Plotting