pyiem.plot.geoplot module#
Plotting utility for generating maps, windroses and everything else under the sun.
This module provides a wrapper around Basemap and windrose packages. It tries to be general so to work for others, but may contain some unfortunate hard coded values. Bad daryl!
Example
Here is a basic example of usage.
>>> from pyiem.plot.geoplot import MapPlot
>>> m = MapPlot(sector='conus', title='My Fancy Title')
>>> m.postprocess(filename='myplot.png')
>>> m.close()
- pyiem.plot.geoplot.load_bounds(filebase)[source]#
Load bounds file
- Parameters:
filebase (str) – the basename of the file containing the data
- Returns:
numpy 2d array of the data
- class pyiem.plot.geoplot.MapPlot(sector='iowa', **kwargs)[source]#
Bases:
objectAn object representing a matplotlib figure.
An object that allows one to quickly and easily generate map plots of data with some customization possible. This is what drives most of the plots you see on the IEM website.
Example
Here is an example of usage:
mplot = MapPlot(sector='midwest', title='My Plot Title') mplot.plot_values([-99,-95], [44,45], ['hi','there']) mplot.postprocess(filename='test.png') mplot.close()
- fig#
figure object
- Type:
matplotlib.Figure
- ax#
main figure plot axes
- Type:
matplotlib.Axes
- draw_usdm(valid=None, filled=True, hatched=False, **kwargs)[source]#
Overlay the US Drought Monitor
This utilizes a GeoJSON web service provided by the IEM. The provided date to this method is passed to the web service which rectifies the date to provide the USDM analysis valid for that date. If no date is specified, the current analysis is plotted.
- Parameters:
valid (str or datetime.date) – The valid time to plot this USDM
filled (boolean) – Should we draw lines or filled polygons
hatched (boolean) – Should we use hatch filling
alpha (float) – Alpha value for the polygons, default 0.5.
- Returns:
date that the USDM is valid for
- draw_colorbar(clevs, cmap, norm, **kwargs)[source]#
Draw the colorbar on the structed plot using self.cax.
- Parameters:
clevs (list) – The levels used in the classification
cmap (matplotlib.colormap) – The colormap
norm (normalize) – The value normalizer
title (str,optional) – Place a label on the side, adjusts the plot accordingly to allow this text to fit, no multiline please!
spacing (str,optional) – should the colorbar be uniform or proportional, defaults to uniform
- plot_values(lons, lats, vals, fmt='%s', valmask=None, color='#000000', textsize=14, labels=None, labeltextsize=10, labelcolor='#000000', showmarker=False, labelbuffer=25, outlinecolor='#FFFFFF', zorder=None, **kwargs)[source]#
Plot values onto the map
- Parameters:
lons (list) – longitude values to use for placing vals
lats (list) – latitude values to use for placing vals
vals (list) – actual values to place on the map
fmt (str, optional) – Format specification to use for representing the values. For example, the default is ‘%s’.
valmask (list, optional) – Boolean list to use as masking of the vals while adding to the map.
color (str, list, optional) – Color to use while plotting the vals. This can be a list to specify each color to use with each value.
textsize (str, optional) – Font size to draw text. labels (list, optional): Optional list of labels to place below the plotting of vals
labeltextsize (int, optional) – Size of the label text
labelcolor (str, optional) – Color to use for drawing labels
showmarker (bool, optional) – Place a marker on the map for the label
labelbuffer (int) – pixel buffer around labels, a value of 0 disables the label culling logic.
outlinecolor (color) – color to use for text outlines
zorder (int or list, optional) – zorder to use for plotting.
textoutlinewidth (int) – width of the font outline, default 3. A value <= 0 disables text outlines.
isolated (bool) – Only compute label collision against labels within this plot_values call. Default false
backgroundcolor (color) – color to use for the background of the label text, default is None.
- hexbin(lons, lats, vals, clevs, **kwargs)[source]#
hexbin wrapper.
- Parameters:
draw_colorbar (bool,optional) – Draw colorbar default True.
- imshow(grid, affine, crs, clevs=None, **kwargs)[source]#
Reprojects an image onto each MapPanel and then draws it.
- Parameters:
- Keyword Arguments:
- pcolormesh(lons, lats, vals, clevs, **kwargs)[source]#
Opinionated mpl.pcolormesh wrapper.
If you supply a lons in the same shape of the vals, this method will tack on an extra row and column to make matplotlib happy. If you do not want this, then pass your own lons + lats that is 1 column and 1 row greater than vals.
- Parameters:
draw_colorbar (bool,optional) – Draw colorbar default True.
- draw_mask(sector=None)[source]#
Draw a mask on the main axes.
If sector is not provided, this attempts to intelligently to the masking the user wants.
- Parameters:
sector (str,optional) – Hard code what type of sector masking should happen.
- contourf(lons, lats, vals, clevs, **kwargs)[source]#
Contourf
- Parameters:
- Returns:
The values used for plotting, maybe after gridding
- Return type:
vals (np.array)
- fill_climdiv(data, **kwargs)[source]#
Fill climate divisions using provided data dictionary
- Parameters:
data (dict) – A dictionary of climate division IDs and values
- fill_ugcs(data, **kwargs)[source]#
Overlay filled UGC geometries using bundled geometries.
Note the importance of the is_firewx flag. This determines which UGC database to look at in the face of ambiquity.
Note that this will fail when provided a data dictionary that has both zones and counties. It is recommended to plot from application logic with your own geometries in this instance.
- Parameters:
data (dict) – A dictionary of 6 char UGC code keys and values
bins (list, optional) – Bins to use for cloropleth, default 0:101:10
color (dict, optional) – Hard code what each UGC should display as for color.
discontinued (bool, optional) – Should we include discontinued UGCs within the baseline geodata for plotting, default is False.
is_firewx (bool, optional) – Are we plotting fire weather zones?
draw_colorbar (bool, optional) – Should a color bar be generated, default is True.
plotmissing (bool, optional) – Should missing UGC data be plotted?
labels (dict, optional) – UGC indexed dictionary to use for labeling.
lblformat (str, optional) – Format string for labels, default %s.
missingval (str, optional) – value to use when labelling UGCs with missing values, defaults to ‘-‘.
- fill_fema_regions(data, **kwargs)[source]#
Add overlay of filled polygons for FEMA Regions.
Data is dictionary-ish and keys should be ints!
- fill_rfc(data, **kwargs)[source]#
Add overlay of filled polygons for NWS RFCs.
Data is dictionary-ish. Note that the ids used here are the WMO center IDs (ie TAR) and not basin ids (ie NERFC)
- fill_cwsu(data, **kwargs)[source]#
Add overlay of filled polygons for NWS CWSUs.
Data is dictionary-ish.
- fill_cwas(data, **kwargs)[source]#
Add overlay of filled polygons for NWS Forecast Offices.
Method adds a colorized overlay of NWS Forecast Offices based on a data dictionary of values provided. This method also places a color bar on the image.
- drawcities(**kwargs)[source]#
Overlay some cities
- Parameters:
minpop (int,optional) – Minimum population to consider for plotting.
labelbuffer (int) – approximate number of pixels to compute overlap
textsize (int) – size of the text
color (str) – color to plot the text with
outlinecolor (str) – color to outline the text with
isolated (bool) – Cause plot_values to do label collision against only labels from drawing cities. Default False.
- drawcounties(color='k')[source]#
Draw counties onto the map
- Parameters:
color (color,optional) – line color to use
- postprocess(**kwargs)[source]#
Postprocessing.
- Parameters:
filename (str) – file to save output to.
web (bool) – Write result to sys.stdout, default False.
memcache (obj) – write image to memcache
memcachekey (str) – key to use when writing to memcache.
memcacheexpire (int) – how long should we persist in memcache, default is 300.
pqstr (str) – Do pqinsert with the following LDM product name.
- overlay_roadcond(valid=None)[source]#
Overlay Iowa Winter Road Conditions.
- Parameters:
valid (datetime.datetime) – Valid time for NEXRAD overlay.
- overlay_nexrad(valid=None, product='N0Q', caxpos=None)[source]#
Overlay an IEM NEXRAD Composite Image.
- Parameters:
valid (datetime.datetime) – Valid time for NEXRAD overlay.
product (str) – either N0Q or N0R for the mosaic type.
caxpos (array-like) – matplotlib.axes.set_position value for the colorbar. Defaults to something in the upper-right.
- Returns:
valid time of the NEXRAD, or None if not found.